CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

CHEMISTRY

Unit 1 - Paper 02'

2 hours 30 minutes

Specimen

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of <u>SIX COMPULSORY</u> questions in two sections.
- 2. Section A consists of THREE compulsory questions, one from each Module. Write your answers in the spaces provided in this booklet. Each question is worth 15 marks
- 3. Section B consists of THREE compulsory questions, one from each Module. Write your answers in the answer booklet provided. Each question is worth 15 marks.
- 4. Attach your answer booklet to the question booklet and return them to the supervisor.
- 5. The use of non-programmable calculators is allowed.
 - 6. A data booklet is provided.

ŗ

.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

Copyright © 2006 Caribbean Examinations Council ® All rights reserved

ų

2

Answer ALL questions.

MODULE 1

	e the terms
(i)	mole
	[2 ma
(ii)	molar mass.
	[1 m
(iii)	State the units of molar mass.
	[1m
	n ³ of a solution of phosphorous (V) acid containing 1.96g dm ⁻³ reacter 25 cm ³ of a solution containing 1.28 g dm ⁻³ sodium hydroxide to give
20 cr with solut	ion of sodium hydrogen phosphate (Na ₂ HPO ₄).
solut	ion of sodium hydrogen phosphate (Na ₂ HPO ₄). ive atomic masses: $P = 31.0$, $H = 1.0$, Na = 23.0, $O = 16.0$
solut Relat	ion of sodium hydrogen phosphate (Na ₂ HPO ₄).

ţ

FUNDAMENTALS IN CHEMISTRY

1.

02112/SPEC

[2marks]

(ii) sodium hydroxide that reacted

[1 mark]

i

(iii) sodium hydroxide that reacted with 1 mole of the acid.

[1mark]

(c) Derive the equation for the reaction that occurred in Part (b) above.

.

[1mark]

(d) (i) State Avogadro's Law.

[1 mark]

(e) Outline the experimented steps involved in carrying out the reaction described in (b) on page 2.

• • •

:

*** **

.

•

[5 marks]

02112/SPEC

<u>,</u>

٠

· A

Total 15 marks

MODULE 2

KINETICS AND EQUILIBRIA

- 2. A student is attempting to find the cell potential of a Daniell (Zn/Cu) cell.
 - (a) (i) Outline the experimented steps he has to follow to obtain a reading of approximately 1.10 V on his voltmeter.

		[5 marl
		[5 marl
(ii)	Write the ionic half equation for the reaction occurring a electrodes.	
(ii)	Write the ionic half equation for the reaction occurring a electrodes.	
(ii)	electrodes.	
(ii) (iii)	Write the ionic half equation for the reaction occurring a electrodes.	t EACH of t
	electrodes.	t EACH of t
	electrodes	t EACH of t
	electrodes.	t EACH of t

	(iv)	Explain the direction of electron flow.
	(v)	Write the cell diagram.
	(vi)	[1 mar Write the equation to represent the cell reaction.
(b)	Use ti	[1 mar he E ^{θ} value for each electrode (in the data booklet) to determine the E ^{θ} _{co}
(c)	Sugge	[2 mark est TWO changes which could be made to the cell in (a) to cause the co tial to be greater than 1.10V.
		· · · · · · · · · · · · · · · · · · ·
		[2 mark
		MODULE 3 Total 15 mark

02112/SPEC

28

•

4

ţ

6

CHEMISTRY OF THE ELEMENTS

(b) What are the colours of aqueous (i) Co ²⁺ ? (ii) Mn ²⁺ ? [2 man (c) If aqueous Co ²⁺ is heated to dryness, what colour is observed? [1 ma (d) Explain what is meant by the term 'ligand'. [1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula:	3. (a)	Transition elements form coloured compounds.		
(b) What are the colours of aqueous (i) Co ²⁺ ? (ii) Mn ²⁺ ? [2 man (c) If aqueous Co ²⁺ is heated to dryness, what colour is observed? [1 ma (d) Explain what is meant by the term 'ligand'. [1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man [2 man [2 man [3 man [2 man [2 man [2 man (c) If aqueous Co ²⁺ is heated to dryness, what colour is observed? [1 ma (d) Explain what is meant by the term 'ligand'. [1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man (ii) an excess of ammonia solution is added to (e) (i) on page 6.		State THREE OTHER characteristic properties of transition elements.		
(b) What are the colours of aqueous (i) Co ²⁺ ? (ii) Mn ²⁺ ? [2 man (c) If aqueous Co ²⁺ is heated to dryness, what colour is observed? [1 ma (d) Explain what is meant by the term 'ligand'. [1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man [2 man [2 man [3 man [2 man [2 man [2 man (c) If aqueous Co ²⁺ is heated to dryness, what colour is observed? [1 ma (d) Explain what is meant by the term 'ligand'. [1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man (ii) an excess of ammonia solution is added to (e) (i) on page 6.				
 (b) What are the colours of aqueous (i) Co²⁺? (ii) Mn²⁺? [2 man (c) If aqueous Co²⁺ is heated to dryness, what colour is observed? [1 man (d) Explain what is meant by the term 'ligand'. [1 man (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man (ii) an excess of ammonia solution is added to (e) (i) on page 6. 				
 (i) Co²⁺? (ii) Mn²⁺? [2 main structure [2 main structure] (c) If aqueous Co²⁺ is heated to dryness, what colour is observed? (1 main structure] (d) Explain what is meant by the term 'ligand'. (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 main structure] [3 main structure] [4 main structure] [5 main structure] [6 main structure] [7 main structure] [9 main structure] [9 main structure] [9 main structure] [1 main structure] [1 main structure] [2 main structure] [2 main structure] [2 main structure] [2 main structure] [3 main structure] [4 main structure] [4 main structure] [5 main structure] [6 main structure] [7 main structure] [9 main structure]<!--</td--><td></td><td>[3 marks]</td>		[3 marks]		
 (ii) Mn²⁺? [2 main [2 main	(b)	What are the colours of aqueous		
[2 mail (c) If aqueous Co ²⁺ is heated to dryness, what colour is observed? [1 mail (d) Explain what is meant by the term 'ligand'. [1 mail] (d) Explain what is meant by the term 'ligand'. [1 mail] (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 mail] [2 mail] [2 mail] (ii) an excess of ammonia solution is added to (e) (i) on page 6.		(i) Co ²⁺ ?		
 (c) If aqueous Co²⁺ is heated to dryness, what colour is observed? [1 ma [1 ma (d) Explain what is meant by the term 'ligand'. [1 ma [1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 max (ii) an excess of ammonia solution is added to (e) (i) on page 6. 	•	(ii) Mn ²⁺ ?		
[1 ma (d) Explain what is meant by the term 'ligand'.		[2 marks]		
 (d) Explain what is meant by the term 'ligand'. [1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man (ii) an excess of ammonia solution is added to (e) (i) on page 6. 	(c)	If aqueous Co ²⁺ is heated to dryness, what colour is observed?		
[1 ma (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV)		[1 mark]		
 (e) Write the formula of the species formed, and describe what occurs when (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man (ii) an excess of ammonia solution is added to (e) (i) on page 6. 	(d)			
 (i) ammonia solution is added to aqueous copper (II) sulphate (IV) Formula: [2 man (ii) an excess of ammonia solution is added to (e) (i) on page 6. 		[1 mark]		
Formula: [2 man (ii) an excess of ammonia solution is added to (e) (i) on page 6.	(e)	Write the formula of the species formed, and describe what occurs when		
[2 mar (ii) an excess of ammonia solution is added to (e) (i) on page 6.		(i) ammonia solution is added to aqueous copper (II) sulphate (IV)		
(ii) an excess of ammonia solution is added to (e) (i) on page 6.		Formula:		
		[2 marks]		
02112/SPEC GO TO NEXT PAGE		(ii) an excess of ammonia solution is added to (e) (i) on page 6.		
	02112/SPEC	GO TO NEXT PAGE		

(ii) an excess of ammonia solution is added to (e) (i) on page 6.

Formula:

[2 marks]

(f) The presence of carbon monoxide in the blood can prevent oxygen from reaching the tissues.

Use the ligand exchange theory to account for this occurrence.

.

• • • •

÷

··· ..

[4 marks]

Total 15 marks

02112/SPEC

ta da anticipation de la composición de

ļ

, ,

ì

8

SECTION B

Answer ALL questions

MODULE 1

FUNDAMENTALS IN CHEMISTRY

State Hess's Law. (a) 4.

> Define (b)

.

standard enthalpy change of formation (i)

[2 marks]

- lattice energy. (ii)
- The following diagram represents the Born Haber cycle for the formation of (c) compound MX(s).

The associated enthalpy changes in kJ mol⁻¹ for the cycle above are as follows:

 $\Delta H^{\theta}_{\Lambda} M(s) = +86; \Delta H^{\theta}_{1} M(g) = +408; \Delta H^{\theta}_{F} (MX(s)) = -431; \Delta H^{\theta}_{D} X_{2} = +122;$ $\Delta H_{E}^{0} X(g) = -372$

- Which enthalpy values correspond to EACH of the stages I, III and IV (i) in the cycle above?
- Calculate the lattice energy of MX(s). (ii)

[6 marks]

Account for the difference in the lattice energy for MgCl₂(s) and (d) NaCl(s).

[4 marks]

02112/SPEC

[1 mark]

(e) Explain why the molar enthalpy changes for the following reactions have identical values.

 $\begin{array}{l} \text{HCl (aq) + NaOH (aq)} \rightarrow \text{NaCl (aq) + H}_2\text{O(I)} \\ \text{H}_2\text{SO}_4 (aq) + 2\text{KOH (aq)} \rightarrow \text{K}_2\text{SO}_4 (aq) + 2\text{H}_2\text{O(I)} \end{array}$

[2 marks]

Total 15 marks

MODULE 2

KINETICS AND EQUILIBRIA

(a) Account for the observations in the statement below.

Pure water is a poor conductor of electricity whereas water in the presence of a trace of $H^+(aq)$ is a good conductor.

[3 marks]

- (b) (i) Derive the relationship for the ionic product of water, K_w .
 - (ii) State how the value of K_w varies with temperature.

[3 marks]

(c) (i) Calculate the pH of EACH of the solutions A, B and C, given that their concentrations are as shown in the table below.

Solution	Concentration of H ⁺ (aq) mol dm ⁻³
A	2 x 10 ⁻⁵
В	1 x 10 ⁻²
С	1 x 10 ⁻¹⁴

(ii) Place the solutions A, B and C in 5 (c) (i) on a pH scale relative to the pH of pure water.

[4 marks]

GO TO NEXT PAGE

02112/SPEC

9

5.

- (d) A student is asked to prepare a buffer solution using an aqueous solution of sodium hydroxide and one of the aqueous solutions, X(aq) or Y(aq). The dissociation constants for X is $K_a = 1.8 \times 10^{-5}$, and for Y is $K_b = 1.8 \times 10^{-5}$
 - (i) Define the term 'buffer solution'.
 - (ii) Which of the solutions, X or Y, would you use with the sodium hydroxide to prepare a buffer solution? Justify your answer.
 - (iii) Explain how small additions of H⁺ and OH⁻ ions are accommodated in the buffer solution prepared in 5 (d) (ii).

[5 marks]

Total 15 marks

MODULE 3

CHEMISTRY OF THE ELEMENTS

(a)

6

(i) Calculate the oxidation number of the first mentioned element in EACH of the following compounds, and explain the variation in these oxidation numbers:

 $MgCl_2$ [Al(OH)₄]⁻ SiF₆²⁻ PO₃³⁻

[5 marks]

(b) (i) Explain the terms 'atomic radius' and 'ionic radius'

- (ii) Account for the variation in atomic and ionic radii of the elements in Group II.
- (iii) Account for the variation in the solubility of the sulphate (VI) of the Group II elements.

[5 marks]

(c) Explain the variation in the acid/base character of the oxides of oxidation state +2 of the elements of Group IV.

Total 15 marks

END OF TEST

GO TO NEXT PAGE

01112/SPEC